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A spectral collocation method is used to analyse the linear stability, both viscous and 
inviscid, of a family of self-similar vortex viscous cores matching external inviscid 
vortices with velocity u varying as a negative power of the distance r to their axis 
of symmetry, u N rmP2 (0 < m < 2). Non-parallel effects are shown to contribute 
at the same order as the viscous terms in the linear governing equations for the 
perturbations, and are consequently retained. The viscous stability analysis for the 
particular case m = 1, corresponding to Long’s vortex, has recently been performed 
by Khorrami & Trivedi (1994). In addition to the inviscid non-axisymmetric modes 
of instability found by these authors, some inviscid axisymmetric unstable modes, 
and purely viscous unstable modes, both axisymmetric and non-axisymmetric, are 
also found. It is shown that, while both solution branches (I and 11) of Long’s vortex 
are destabilized by perturbations having negative azimuthal wavenumber ( n  < 0), 
only the Type I1 Long’s vortex is also unstable for axisymmetric disturbances n = 0, 
as well as for disturbances with n > 0. Global pictures of instabilities of Long’s 
vortex are given. For m > 1, the vortex cores have the interesting property of losing 
existence when the swirl number is larger than an m-dependent critical value, in close 
connection with experimental results on vortex breakdown. The instability pattern 
for m > 1 is similar to that found for Long’s vortex, but with the important difference 
that the parameter characterizing the different vortices, and therefore their stability, 
is a swirl parameter, which is precisely the one known to govern the real problem, 
while this is not the case in the highly degenerate case m = 1. 

1. Introduction 
The analysis of the linear stability of swirling flows, particularly of swirling jets, 

has been the subject of a number of works since the seminal one by Howard & 
Gupta (1962): Uberoi, Chow & Narain (1972), Lessen, Singh & Paillet (1974), 
Lessen & Paillet (1974), Duck & Foster (1980), Stewartson (1982), Leibovich & 
Stewartson (1983), Duck (1986), Khorrami (1991a), Mayer & Powell (1992), Duck & 
Khorrami (1992), Foster (1993), among others. Most of these investigations focused 
on Batchelor’s (1964) trailing vortex solution. More directly related to the present 
work are those that analyse the temporal stability of Long’s (1958, 1961) vortex, 
among them Foster and Duck (1982), Foster and Smith (1989), Foster and Jacqmin 
(1992), Khorrami and Trivedi (1994), Ardalan, Draper and Foster (1995). The spatial 
stability of Long’s vortex has also been analysed recently by Drazin, Banks, and 
Zaturska (1995). Long’s vortex, contrary to other columnar vortex models, is non- 
parallel: it has a small radial velocity component and the flow magnitudes present 
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a slow variation in the axial direction. This characteristic has made Long’s vortex 
more suitable to model several types of high-Reynolds-number vortex cores, including 
tornadoes and other geophysical vortices, as well as vortices of technological interest, 
mainly in the fields of aeronautics and chemical engineering. The study of the stability 
of these model vortices, in addition to its theoretical interest, is thus important in 
the understanding and the ability to control swirling flows of technological and 
geophysical relevance. 

This paper analyses the stability of a family of self-similar axisymmetric vortex 
cores which are exact solutions to the near-axis boundary layer approximation to the 
Navier-Stokes equations matching an external (inviscid) velocity u proportional to 
a negative power of the distance r to the axis of symmetry, u - rrn-’, where m is 
in the range 0 < m < 2. This family includes the well-known Long’s vortex as the 
particular case m = 1. The structure of these vortices is described by Fernandez-Feria, 
Fernandez de la Mora & Barrero (1995, hereinafter referred to as FFB; see also 
$2 below). For m # 1, the core structure is solely dependent on the so-called swirl 
parameter L, or ratio of the inviscid near-axis swirl to axial velocity, there being two 
independent solutions for L smaller (when 1 < rn < 2) or larger (when 0 < m < 1) 
than a critical (or folding) value L*(m), and none otherwise. Thus, the set of three 
ordinary differential equations governing these vortices (see $2) has the interesting 
property of losing existence when the swirl parameter L is larger (when 1 < rn < 2) 
or smaller (when 0 < m < 1) than a critical value L*(m),  a behaviour which supports 
the theory proposed by Hall and others (e.g. Hall 1972) on vortex breakdown. For 
m = 1 all the solutions have the same swirl number ( L  = a), and the core structure 
is characterized by the axial flow force parameter M (which is constant along the 
vortex only for m = 1; see Long 1961 and FFB): for values of M larger than a critical 
value M* two independent solutions exist and none for M < M*. However, since the 
parameter governing vortex breakdown for high-Reynolds-number real flows is found 
to be a swirl number (e.g. Spall, Gatski & Grosch 1987), and not a flow force, it was 
shown in FFB that viscous vortex cores may be modelled by the self-similar solutions 
with m # 1 (more precisely, 1 < m < 2) better than by Long’s vortex ( m  = 1). 
Indeed, the comparison made in FFB of both the critical swirl parameter and the 
viscous core structure for the family of self-similar vortices with several numerical and 
experimental results under conditions near the onset of vortex breakdown showed a 
good agreement for values of m slightly larger than, but different from, unity. 

The present study will analyse the linear stability, both viscous and inviscid, of 
the different solutions of the family of self-similar vortices for some values of rn > 1 
(particularly, the cases m = 1.1, whose structure is shown in FFB to agree fairly 
well with several experimental results for both confined and open vortex cores, and 
m = 1.2, are considered), and m = 1 (Long’s vortex). One of the motivations is 
to investigate, in the light of the map of all the unstable modes, whether some 
relation exists between hydrodynamic instabilities and the solution breakdown. The 
subject is of interest because, as is well known, one of the theories proposed to 
explain the vortex breakdown phenomenon relates it to hydrodynamic instabilities 
(e.g. Lessen et al. 1974; see also the reviews by Hall 1972, Leibovich 1984, and 
Escudier 1988). Here we have a clear example where, for swirl numbers above a 
critical value, the near-axis boundary layer equations governing the viscous core of 
the vortex fail to have a solution, which is the view proposed by Hall and others to 
explain the vortex breakdown phenomenon. On the other hand, since these vortices 
are described by self-similar solutions, the linear stability analysis is relatively easy to 
perform in comparison with other viscous flows where vortex breakdown occurs (e.g. 
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the stability analysis performed by Gefgat, Bar-Yoseph & Solan 1996 for confined 
swirling flows). 

In addition to its possible interest for the relation between vortex breakdown and 
linear instabilities, the paper is also a contribution to the existing knowledge on linear 
stability of swirling jets, which has a long tradition (see references given above). Of 
particular interest here is the paper by Khorrami & Trivedi (1994, hereinafter denoted 
by KT), which analyses the viscous stability of Long’s vortex. In fact, the staggered 
spectral collocation technique used by these authors (developed by Khorrami 1991b) 
is the one used in the present work to solve the set of linear equations for the stability 
problem ($3). In addition, the results given by these authors will be compared with 
the present ones for the particular case m = 1 as a test of the numerical method ($4). 
It will be seen that the present results for m = 1 coincide exactly with those given 
by KT for non-axisymmetric disturbances and high Reynolds numbers. However, a 
fundamental disagreement is found for the axisymmetric modes : some axisymmetric 
unstable modes are found in this work which these authors failed to uncover. Indeed, 
we shall see that the main difference in the stability of the two types of vortices for a 
given value of m occurs in relation to axisymmetric disturbances. In addition, we find 
purely viscous unstable modes, of the type reported by Khorrami (1991~) in relation 
to trailing line vortices, which were also not found by KT for Long’s vortex. Finally, 
$5 presents results for m slightly larger than unity, and all the results are summarized 
and discussed in $6. 

2. The basic vortices 
The vortices whose stability will be analysed are self-similar solutions to the near- 

axis boundary layer approximation of the steady, incompressible and axisymmetric 
Navier-Stokes equations, matching inviscid vortical flows with velocity and pressure 
fields proportional to a certain power of the distance r to the axis of symmetry 
(see FFB). In cylindrical polar coordinates ( r ,  8, z ) ,  the velocity field ( U ,  V ,  W )  and 
pressure P of this external inviscid flow are 

where p is the fluid density, 0 < m < 2, and W, and the swirl parameter L are positive 
constants. The vortex core structure is given by 

= v z f ( 0 ,  (2.2) 

where Y is the stream function for the meridional motion, in terms of which the axial 
and radial velocity components are: 
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In the above expressions, 6 ( z )  is the boundary layer thickness, 

and the similarity variable 5 is defined by 

The functions f , y  and p are governed by the following set of nonlinear ordinary 
differential equations : 

Y 2  = 25P’, (2.8) 

m - 1  fY Y 2-yf’ - 2fy’ - - = 4(5y’)’ - -, 
m 5 5 

(2.10) -----f2 + f f”  + - [(2 - m)p + tp’] = -2(5f”)’, 

where the primes denote differentiation with respect to 5 .  These equations are solved 
in FFB subject to regularity conditions at the axis, 

2-m 1 
rn 2m 

5 + 0, f = A15 + 0(t2), y f A 2 P 2  + 0 ( P 2 ) ,  p = -1 + 0(4), (2.11) 

where A1 and A2 are arbitrary constants, and on matching with (2.1) as 5 -+ 00: 

(2.12) 

B = mLCmI2. (2.13) 
As discussed in FFB, owing to the invariance of (2.8)-(2.10) under the uniparametric 
group of transformation of scale f + f ,  5 + Cc, y + y/C, p + p/C2, one may start 
the numerical integration of these equations with just two degrees of freedom, A1 and 
A2, choosing -1 as the pressure constant at the axis (equation (2.11)). The scaling 
constant C is then obtained numerically (equation (2.12)), as well as the constant 
B which fixes the swirl parameter L through (2.13). However, as shown in FFB, 
the two constants Al and A2 are not independent, but for each Al in the interval 
-1/$ < Al  < 00 (note that A1 is related to the axial velocity at the axis through 
d2W(r = O)/(vz) = Zf’(0) = 2A1), the desired behaviour (2.12) at infinity requires 
finding a certain value A2(A1), which is obtained by shooting. As a consequence, 
for each m, the swirl parameter L is a function of A l .  Except for the case m = 1, 
this function is non-monotonic, having an extremum L*(m), which is a minimum for 
0 < m < 1 and a maximum for 1 < m < 2 (see figures 2 and 3 in FFB). Thus, when 
0 < m < 1, two solutions exist for L > L*(m), and there is no solution for L < L*(rn); 
when 1 < m < 2, no solutions exist for L > L’(m), and there are two possible 
solutions for L < L*(m). For the special case m = 1, which corresponds to Long’s 
vortex, L = 8 for all values of Al .  In this particular case, the non-dimensional flow 
force parameter, M ,  which is constant along the axis for m = 1, 

= $ l m ( P  + 4f’2)d5 (m = l), (2.14) 

plays a role somewhat analogous to L for m # 1 (Long 1961; Burggraf & Foster 
1977): for M > M’ N 3.75 two solutions exist (denoted by Burggraf & Foster as 
Type I and Type I1 solutions) and none for M < M’. 
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FIGURE 1. Basic vortices for m = 1.1. (a)  Function L(A1). The folding or critical value of L is 
L' N 1.223 (A; N 0.15 and A2 21 0.45). Two different solutions exist for L < L* (Type I for A1 > A; 
and Type I1 for -l/$ < A1 < A ; ) ,  and none for L > L'. (b,c) Axial and azimuthal velocity 
profiles for different values of Al (note that the axial velocity at the axis is 2A1.) Although only the 
interval 0 < < 20 is plotted, qmax = 50 is used in all the computations. 

As mentioned in the Introduction, it was shown in FFB that from a physical point 
of view the most interesting velocity profiles of the family are those corresponding to 
values of m slightly larger than unity. For that reason, m = 1.1 and m = 1.2 have been 
chosen for the stability analysis of $5. Figure 1 shows the function L ( A I )  and some 
axial and azimuthal velocity profiles for m = 1.1. By analogy with the notation of 
Burggraf & Foster, solutions are termed Type I or Type I1 depending on whether A1 
is in the interval (A;(m),co) or ( - l /&Ay(m)) ,  respectively. Prior to that, 94 considers 
the case m = 1 (Long's vortex), with the main motivations of comparing the present 
results with those obtained in previous works (especially KT), and providing a more 
complete map of the unstable regions for Long's vortex. The function M(A1) and 
some axial and azimuthal velocity profiles for m = 1 are depicted in figure 2. 
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FIGURE 2. Long's vortex (rn = 1). (a) Function M(A1). The critical (folding) value is M' N 3.75 
(A;  N 0.15 and Az N 0.50). (b,c) Axial and azimuthal velocity profiles for different values of Al .  

3. Stability formulation and numerical method 
To study the linear stability of the above-described family of swirling jets, the flow 

variables, ( u , ~ ,  w) and p ,  are decomposed, as usual, into a mean part, (U, V ,  W )  and 
P ,  and a small perturbation. After (2.3)-(2.5), 

vz V 
w = -[2f'+- 

6 2  
(3.1) 

The small dimensionless fluctuating velocity and pressure fields, (il,V,iV) and p, are 
assumed to be of the form 

[il,U,iV,j7] = [iF([), G(t), H(~),17(~)]ei(k'+"e-"t) ,  (3.3) 
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where F ,  G, H and 27 are the complex eigenfuctions, n is the azimuthal wavenumber, 
and k and i2 are the dimensional axial wavenumber and frequency, respectively. Note 
that, as a difference with KT, the scaling factors multiplying both the dimensionless 
mean flow and perturbations in (3.1) and (3.2) are z-dependent. Also, the amplitudes 
F ,  G, H and 27 are assumed to be functions of the self-similar variable 5, instead of 
just the radial distance r .  All this will allow the rate of change in the axial direction 
of the basic flow and the amplitude of the perturbations to be taken into account. It 
should also be noted that, although other ways of taking normal modes are possible, 
the form (3.1)-(3.3) does not restrict the admissible class of perturbations, so that 
general linearized perturbations are considered. 

As shown below, the axial wavelengths of interest are of the order of (or larger 
than) the boundary layer thickness. Accordingly, the following dimensionless, order 
of unity (or smaller), local axial wavenumber will be used instead of k: 

u = 6k .  (3.4) 

The corresponding local dimensionless frequency is 

d3f2 o = -. 
ZV 

(3.5) 

For the analysis of temporal stability performed here, the axial wavenumber a will be 
taken to be real and non-negative, and the frequency o will be complex. Depending 
on the sign of the imaginary part of the frequency, mi, the perturbations will be either 
growing (unstable) or decaying (stable) in time. 

Substituting (3.1)-(3.5) into the Navier-Stokes equations for the steady flow of an 
incompressible fluid, and neglecting second-order terms in both the small perturba- 
tions and the inverse of the local Reynolds number, 

which is assumed to be small within the boundary layer approximation, the following 
set of linear equations results: 
continuity 

m 
n G 01 A 

(5Ii2F)’ + -- + -H + - 
2 51/2  2 2i (3.7) 

r-momentum 

-4id5F”-2id(f+2)F’+ 

&momentum 

f’ + 1-f + .’ + a2 
iny 2(m - 1) 

5 5 
-445G”-2d(f+2)G’+ -io + 51/2 + 2iuf’ + d 

(3.9) m 
in 

P + 5 1 / 2 n + A  - 
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z-momentum 

45 n2 

5 
f’  - ,f” + - + a2 

iny 
-4A(H”-2A(f+2)H’+ -iw + 51/2 + 2iaf’ + A 

2(m - 2) 25 ] I7 -Axil' = 0. 
m 

(3.10) 

The boundary conditions are (Batchelor & Gill 1962; Khorrami 1991b): 
<-+a 

< = 0  
F ( a )  = G(co) = H(w) = 0; (3.11) 

F ( 0 )  = G(0) = 0, H’(0) = 0, ( n  = 0), (3.12) 

F(0)  f G(0) = 0, F’(0) = 0, H ( 0 )  = 0 (n = f l ) ,  (3.13) 

(3.14) 
For A = 0 (inviscid problem), m does not enter explicitly into (3.7)-(3.10), but 

through the mean-flow solutions. Therefore, equations (3.7)-(3.10) coincide exactly 
with those given by KT in the limit Re -+ GO (and previous works on the inviscid 
stability of Long’s vortex; see the next section for the specific relations between the 
notation in KT and that used here). However, for A # 0 (viscous problem), in 
addition to the fact that here m # 1, some new terms proportional to A appear in 
(3.7)-(3.10) which are missing in the equivalent equations by KT for m = 1. These new 
terms come from the axial derivatives of both the mean flow and the amplitude of 
the perturbations, non-parallel effects which were neglected in KT and most previous 
works. But the changes in the z-direction of the flow give rise to terms in the equations 
of the same order as the viscous terms, i.e. they are linear in A,  and must consequently 
be retained. In other words, for the family of vortices analysed here, which includes 
Long’s vortex as the case m = 1, the parallel-flow approximation is only consistent 
in the inviscid limit of the stability analysis. It should be mentioned here that non- 
parallel effects were considered by Foster & Jacqmin (1992) in the instability of Long’s 
vortex. These authors considered, however, only Type I1 vortices in the asymptotic 
limit of large flow force M (m = 1 and Al -+ -l/,,h in the present notation). 

Equations (3.7)-( 3.10) constitute a linear system of ordinary differential equations 
for the (-dependence of the amplitude of the perturbations, which, together with the 
boundary conditions (3.1 1)-(3.14), form an eigenvalue problem for the frequency w 
(see below). It should be noted that the axial coordinate z enters into (3.7)-(3.10) as a 
parameter (through A ,  and embedded in 5 ,  w and a). That is, non-parallel effects are 
taken into account locally, by considering the rate of axial change of both the mean 
flow and the amplitude of the perturbations, which give rise to terms as important 
as the viscous ones. Thus, the temporal stability or instability of the mean flow is 
implicitly a function of z. The approximation assumes that the axial characteristic 
length of the basic flow is large compared to the perturbation wavelength. Therefore, 
the results given below have to be cautiously considered when a is very small. In 
that case, the axial variation of the mean flow has to be taken into account globally: 
one has to integrate the evolution of the perturbations along the axial direction. The 
governing equations become then a system of partial differential equations instead of 
the ordinary differential equations (3.7)-(3.10). 

To solve numerically (3.7)-(3.10), a staggered Chebyshev spectral collocation tech- 
nique developed by Khorrami (1991b) is used. This method has the advantage of 

F ( 0 )  = G(0) = H ( 0 )  = 0 (In1 > 1). 
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eliminating the need for two artificial pressure boundary conditions at the domain 
end points 4 = 0 and 4 = co, which for that reason are not included in (3.11)-(3.14). 
The boundary conditions at infinity (3.11) are applied at a truncated radial distance 
qmax, chosen large enough to ensure that the results do not depend on that truncated 
distance. The computations showed that qmax = 30 (tmax = 900) was sufficient for 
most profiles to obtain an accuracy of six significant figures. Since the value of 
qmax does not affect much the computation time, q,,, = 50 (tmax = 2500) was used 
for all the reported computations. To implement the spectral numerical method, 
(3.7)-( 3.10) are discretized by expanding the perturbation eigenfunctions in terms of 
truncated Chebyshev series. A non-uniform coordinate transformation is used to 
map the interval 0 d 4 d tmax into the Chebishev polynomials domain -1 d s d 1, 
5 = a(1 + s ) / (b  - s), where a is a constant (a = 3 in all the computations) and 
b = 1 +2a/4,,, (Khorrami 1991b). This transformation allows large values of 4 to be 
taken into account with relatively few basis functions. Equations (3.7)-(3.10) together 
with (3.1 1)-(3.14) are thus reduced to a generalized eigenvalue problem of the form 

D X  = ULX,  (3.15) 

where X is the eigenfunction vector 

X = [ F G H n I T ,  (3.16) 

and D and L are 4N x 4N matrices, N being the number of Chebyshev polynomials 
(see Khorrami 1991b for the details). The eigenvalue equation (3.15) is solved here 
by using the IMSL subroutine DGVLCG (and DGVCCG), which provides the entire 
eigenvalue spectrum (and the eigenvectors). N was varied in the range 40 d N < 100, 
so that an accuracy of at least six significant figures was attained (as discussed by 
Mayer & Powell 1992, the closer to neutral stability of a given unstable mode, the 
higher the accuracy needed to reveal it). 

4. The stability of Long’s vortex 
This section considers the case m = 1 or Long’s vortex. First, in order to test 

the numerical method and check the accuracy of the results, a comparison is made 
with the results given by KT (it must be noted here that KT corrected and extended 
previous results by Foster & Duck 1982 on the inviscid stability of Long’s vortex; see 
below). To that end the profile named by KT as Long-I is chosen, which corresponds 
to the Type I solution for M = 4.0 (Al = 0.42,& 2: 0.60, and B N 2.36 in (2.11) and 
(2.12); see figure 3a for the velocity profiles). To make possible the comparison, the 
following relations between the notation of KT and the present one are used (note 
that m = 1): 

The dimensionless radial distance of KT is related to q through r K T  = By/&. Thus, 
qmax = 50 corresponds to a maximum value of r K T  approximately equal to 83 for the 
profile under consideration, which is beyond the maximum used by KT. 

Figure 3(b) displays the same curves as figures 4 and 6 of KT; namely, the 
variation of the growth rate oi for the most unstable mode with Reynolds number 
for some values of n # 0 and a. It is observed that the asymptotes for high Reynolds 
numbers of the different cases represented coincide exactly with those obtained by 
KT. Since for A = 0 and m = 1 both sets of equations are identical, this agreement 
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FIGURE 3. Results for Long-I profile of KT (rn = 1). ( a )  Axial (continuous line) and azimuthal 
(dashed line) velocity profiles (Long-I corresponds to Type I solution for M = 4 or Al = 0.42 in 
figure 2a). (b)  Maximum growth rate as a function of the Reynolds number for some asymmetric 
modes ( n  # 0) with different axial wavenumbers. KT notation is used (see (4.1)). (c ,d)  Maximum 
growth rate and real part of the frequency as a function of the axial wavenumber for the case given 
in ( b )  when ReK, = 4000. 

constitutes a favourable test of the numerical method and its accuracy. For moderate 
Reynolds numbers ( A  # 0, but small), some additional terms appear in (3.7)-(3.10) 
in relation to the equivalent equations by KT, as discussed above. However, the 
obtained values of mi, and even the critical Reynolds numbers for the different 
modes, practically coincide with those reported by KT, except for n = -1. For 
this azimuthal wavenumber it is found that a higher mode becomes more unstable 
than the main inviscid one when Re,, approaches the value corresponding to the 
neutral stability of the most unstable inviscid mode. Thus, a purely viscous unstable 
mode, similar to those reported by Khorrami (1991~) in relation to the trailing line 
vortex, appears here for Long's vortex. This viscous mode was not found by KT. 
Indeed, these authors did not find any purely viscous unstable mode for Long's 
vortex after "an extensive search". Hence, the unstable viscous mode for n = -1 
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FIGURE 4. Maximum growth rate (a) and real part of the frequency (b)  as a function of the axial 
wavenumber for rn = 1, A1 = -0.6 (Type I1 solution with M = 7.09) and A = 0, for several values 
of the azimuthal wavenumber n. 

of figure 3(b) is presumably due to the non-parallel effects, neglected by KT. This 
phenomenon of mode crossing and switching for disturbances with n = -1 is not 
new. It was reported by Khorrami (1992) in relation to the instability of a trailing 
line vortex, and, earlier, by Cotton & Salwen (1981) for rotating Hagen-Poiseuille 
flows. 

To complete the comparison with the results given by KT for the Long-I vortex, 
figures 3(c) and 3(d) display the variation of the imaginary and real and parts of 
the frequency with the axial wavenumber for the same cases as in figures 3 and 5 
of KT. As expected from the very small value of A ( A  = 0.00059, corresponding to 
ReKT = 4000 for the Long-I vortex), the agreement between both sets of figures is 
very good. 

In addition to the purely viscous unstable mode for n = -1 just reported, we 
have found others for different values of n, a and A1. More relevant is, perhaps, the 
fact that we have also found inviscid unstable modes for axisymmetric disturbances 
(n = 0). Neither of these were uncovered by KT. Therefore, it seems of interest to 
provide a more detailed map of instability for Long’s vortex, which is given next. 

4.1. Inviscid instabilities 
The variation of the frequency with the axial wavenumber for three representative 
vortices (A1 = -0.6, corresponding to a Type I1 solution; A1 = 1.2, a Type I 
solution, and A1 = 0.15, approximately the critical or folding value; see figure 2), and 
azimuthal wavenumbers n = O,kl,f2,f3, is displayed in figures 4-6 for the most 
unstable modes with A = 0. 

According to figure 4(a), the velocity profile for A1 = -0.6, which corresponds to 
a two-cell vortex with negative axial velocity at the axis and a marked maximum 
outside it (see figure 2b), is unstable for all seven azimuthal wavenumbers represented, 
including axisymmetric disturbances (n = 0), in a wide range of the axial wavenumber. 
The growth rate is larger for n > 0 disturbances than for n < 0 ones. For n = 0, 
the maximum growth rates represented in figure 4(a) correspond to two different 
modes as a increases, as it is more evident in figure 4(b), where the real part of the 
corresponding frequency presents a discontinuity for the values of a where the curve 
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FIGURE 5. Maximum growth rate (a) and real part of the frequency ( b )  as a function of the axial 
wavenumber for m = 1, A ,  = 0.15 (folding value, M = 3.75), and A = 0, for several values of n # 0. 
(c) Growth rate for axisymmetric disturbances (n = 0). 

mi(&) changes its slope. Figure 4(b) also shows that the real part of the frequency for 
n d 0 has a linear variation with 01, with approximately the same slope for all the 
modes (for n = 0 this is so before the mode switching). For n > 0 (and for n = 0 after 
the mode switching), o,(a) is no longer a simple linear relation. These general features 
of o,(a) are also observed for the other two profiles represented (figures 5b and 6b), 
and are in agreement with KT. The slopes for the negative azimuthal wavenumbers 
depends on Al .  

The main difference between the stability characteristics for the case A1 = -0.6 
just described and the profile for A1 = 0.15 (corresponding to the folding value of 
L(A1), and representing a single-cell vortex, with no region of axial flow reversal, but 
with the maximum of the axial velocity outside the axis; see figure 2) is that the 
unstable axisymmetric mode has almost disappeared, having a maximum growth rate 
two orders of magnitude smaller than for n # 0 (figures 5a and 5c). Also, the peak 
growth rates for the n # 0 modes are about half of the corresponding ones for the 
profile with A1 = -0.6. 
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FIGURE 6. Maximum growth rate (a )  and real part of the frequency (b)  as a function of the axial 
wavenumber for rn = 1, A1 = 1.2 (Type I solution with M = 6.838) and d = 0, for several values of n. 

For the velocity profile with Al = 1.2, representing a single-cell jet-like vortex, with 
a marked maximum axial velocity at the axis, no unstable modes with n 2 0 are 
found (figure 6a). 

In view of the important variations in the stability characteristics as the param- 
eter A1 changes, it is interesting to map the growth rate for the different azimuthal 
modes in the (a,Al)-plane. To that end, this plane was discretized for 0 < a < 1.8 
and -0.7 < A1 < 1, and the stability equations solved numerically at each point. 
Figure 7 displays the contours of constant growth rate in the (Al, a)-plane for axisym- 
metric disturbances, n = 0, and two representative non-axisymmetric disturbances, 
n = +1. (All the results given in this work which are presented in the form of a 
topographical map on the (a,Al)-plane are computed using N = 100.) The largest 
unstable region corresponds to n = -1 (figure 7b) ,  for which all the profiles de- 
picted (-0.6 < Al  < 1) are unstable in some interval of the axial wavenumber. 
The smallest peak growth rate for n = -1 occurs at Al N 0.8, and grows as Al 
goes to its extreme values, -1/fi and infinity. For all values of A1 shown, the 
peak growth rates correspond to a slightly smaller than 0.4. In the case of dis- 
turbances with n = 1 (figure 7a), although the peak growth rates are significantly 
larger than for n = -1 when A1 < 0, no unstable modes are found for A1 > 0.6, 
approximately. Finally, unstable axisymmetric ( n  = 0) modes are only found for 
Al smaller than approximately 0.2 (figure 7c). Thus, Type I vortices are stable for 
axisymmetric disturbances. Except for the interval 0.15 < A1 < 0.6, approximately, 
they are also stable for disturbances with positive azimuthal wavenumbers. On the 
other hand, Type I1 vortices are found unstable for disturbances with any value 
of the azimuthal wavenumber in some range of the axial wavenumber. In fact, as 
shown in figure 8, wi grows very fast as A1 + -1/$ for a = O(1). This figure 
shows the a = 0.432 cross-section of the three surfaces oi(a,A1) depicted topograph- 
ically in figure 7 (the results for A1 < -0.6 are not shown in figure 7 to avoid 
cluttering). 

The inviscid instability features for Long’s vortex just described agree with the 
asymptotic results by Foster & Smith (1989) and by Ardalan et al. (1995). Most of 
them also coincide with the more complete results given by KT. For instance, these 
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FIGURE 7. Contours of constant growth rate for the most unstable inviscid ( A  = 0) mode in the 
(a,AI)-plane for m = 1 and n = 1 (a), n = -1 (b ) ,  and n = 0 (c). 

last authors found that their Long-I11 vortex, corresponding to Al 2: 0.8, is unstable 
only for disturbances with n < 0, while the other three profiles (Long-I, A1 N 0.42; 
Long-11, Al 1: -0.15, and Long-IV, A1 N -0.4) are unstable for both n < 0 and n > 0 
modes, in agreement with the present results. It should be noted here that these last 
inviscid unstable modes with positive azimuthal wavenumber were not found in the 
earlier work by Foster & Duck (1982) on the inviscid stability of Long’s vortex. KT 
showed that this was due to the truncation made by those authors of the infinite radial 
domain into a small computation domain (these positive-n modes were nonetheless 
found later by Foster & Smith 1989 in their asymptotic analysis of Type I1 vortices 
in the limit of large values of M ) .  However, as an important difference with the 
present inviscid results, KT did not find any axisymmetric ( n  = 0) unstable mode. 
This was so even for their Long-IV vortex, which presents a marked two-cell structure 
and, according to figures 7 and 8, the growth rate for axisymmetric disturbance is 
only about one order of magnitude smaller than for the non-axisymmetric ones (for 
their Long-I1 vortex it is also found here that the axisymmetric disturbances are 
unstable, but in this case the growth rate is two orders of magnitude smaller than 
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FIGURE 8. Maximum growth rate as a function of A1 for c( = 0.432 and the same values of rn, A 
and n as figure 7. Several mode switchings occur, characterized by a change in the curvature or by 
an abrupt change of slope. 

the growth rate for the non-axisymmetric disturbances). For the inviscid instabilities 
considered in this section this disagreement seems surprising since the non-parallel 
effects are null and, consequently, KT’s linear stability equations coincide exactly 
with those used here for m = 1. The explanation may lie in that most of the 
results given by KT are for ReKT = lo4, which for the Long-IV vortex corresponds 
to d 2: 8.6 x lop4. It is shown below (see figure 14) that the neutral curve in 
the (a,Al)-plane for axisymmetric disturbances and A = 0.001 lies, for moderate 
values of CI, at Al  2: -0.4, which corresponds to the Long-IV vortex of KT. Thus, 
the Long-IV vortex is stable for axisymmetric disturbances when ReKT = 4000. In 
addition, KT did not present detailed results for the Long-IV vortex, just stating 
that “preliminary analysis of the Long-IV vortex revealed stability characteristics 
resembling that of the Long-I1 vortex”, so that “the analysis and discussion of 
Long-IV is omitted here”. But it is shown here that, though the growth rate for 
the axisymmetric disturbances of Long-I1 is very small, this is not so for Long- 
IV. Indeed, figure 8 shows that for velocity profiles with marked two-cell features 
(Al < -0.6, approximately), the growth rates for axisymmetric and non-axisymmetric 
disturbances are of the same order. Thus, Type I1 Long vortices with large values 
of M (Al -> -1/$) are found unstable, with comparable growth rate, for all - 
positive, negative, and null azimuthal wavenumbers n. This is in agreement with 
the asymptotic results by Foster 2% Smith (1989). In the opposite limit of Type I 
vortices with large M (A1 large), only the perturbations with negative values of the 
azimuthal wavenumber are here found unstable. For Al  > 0.9, approximately, it is 
found that the growth rate for constant a increases linearly with Al  (see figure 8 for 
n = -l), in agreement with the asymptotic results by Ardalan et al. (1995) in this 
limit (note in figure 2 that M increases linearly with Al for A1 > 0.8, approximately). 
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FIGURE 9. Maximum growth rate (a) and real part of the frequency (b )  as a function of A = Re-' 
for m = 1, A1 = 1.2 (Type I solution with M = 6.838), and the values of c( and n corresponding to 
the peak growth rates of figure 6. 

4.2. E8ects of viscosity on inviscid modes and viscous instabilities 
Figures 9-1 1 show the effect of viscosity on the frequency of the most unstable inviscid 
modes for values of a and n corresponding to the peak growth rates represented in 
figures 4-6. For a typical Type I vortex (see figure 9 for Al = 1.2), the critical values 
of A ,  A , ,  for the unstable modes with n < 0 are very close and O(10-') (the critical 
Reynolds numbers, Re,, are O(10)). For A < A ,  (Re > Re,) the growth rates increase 
very rapidly until they reach their inviscid values when A = O( lop3). The real part of 
the frequencies (figure 9b) decrease smoothly for A < A,,  approaching their inviscid 
values even faster than the corresponding growth rates. This is common to all the 
cases considered, so that no more figures for o , ( A )  are given. 

Near the folding value of M (figure 10 for A1 = 0.15) the vortex is also unstable 
for disturbances with n 2 0. For n < 0, A ,  is again O(lO-'), while for n > 0 A ,  is 
slightly smaller (the critical Reynolds number is larger), which is in agreement with 
the results given by KT for the Long-I vortex (see figure 3b). For n = 0 disturbances, 
for which the peak inviscid growth rates are about two orders of magnitude smaller 
than for n # 0, A ,  is considerably smaller, between (figure lob). Thus, 
the axisymmetric unstable modes for Long's vortex become stabilized by viscosity at 
Reynolds numbers much larger than the non-axisymmetric ones (Re, = O( lo5)). 

An important difference with the Type I vortex is the appearance of a purely 
viscous unstable mode for n = -1 (figure lOa), similar to that depicted in figure 3b 
for Al = 0.42. Although it was known for quite a long time that viscosity, in addition 
to the stabilizing effect, can also destabilize some flows, no evidence of viscous 
instabilities for swirling flows was found until the work by Khorrami (1991~)  on the 
viscous stability of a trailing (Batchelor's) vortex. However, more recently, KT found 
no viscous unstable modes for the Long's vortex considered here, so that, to our 
knowledge, this is the first evidence of them. The viscous mode for n = -1 depicted 
in figure 10(a) has a peak growth rate about one order of magnitude smaller than 
the most unstable inviscid mode for the same value of n, and it occurs at a value of 
A slightly larger than the critical value for that inviscid mode ( A  = O(10-')). These 
characteristics are in qualitative agreement with those found for the viscous unstable 

and 
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FIGURE 10. Maximum growth rate as a function of A = Re-' for rn = 1, A1 = 0.15 (folding value), 
and the values oft( and n corresponding to the peak growth rates of figure 5. (a) n # 0. (b)  n = 0. 

modes of Batchelor's vortex (Khorrami 1991~;  Mayer & Powell 1992). For n = 0 and 
a = 0.8 (figure lob), a second mode becomes more unstable than the most unstable 
inviscid one near A,.  In fact, although not shown in the figures, there are higher 
unstable modes associated with the given values of n and a which always have lower 
growth rates than the primary modes. 

For the Type I1 vortex considered (A1 = -0.6; figure ll), viscous unstable modes 
appear for all the values of n represented when A = O(10-'). In fact, for some 
values of n, two or more viscous unstable modes appear, as is shown more clearly for 
n = -1. The number of viscous modes increases as A approaches unity, but for such 
low Reynolds numbers the boundary layer approximation of this work is no longer 
valid, and these results are not given in figure 11. 

The fact that viscous unstable modes appear for some velocity profiles makes it of 
interest to map the maximum growth rate in the (Al ,  a)-plane for different values of n 
as A increases (Reynolds number decreases). This will also show more precisely how 
viscosity affects the inviscid modes, and the main differences between viscous and 
inviscid unstable modes. Figures 12-14 show the contours of constant growth rate in 
the (Al ,  a)-plane for n = -1, n = 1, and n = 0, respectively, and for increasing values 
of d. When A = the contour lines for mi 2 0.02 approximately, practically 
coincide with the inviscid ones (figure 7) .  Obviously, this is in agreement with the 
results just described for the effect of viscosity on the peak growth rates of the 
inviscid unstable modes. However, for very small growth rates, the inviscid unstable 
regions in the (Al,d)-plane are larger than for A = especially for axisymmetric 
disturbances. As also shown above, the inviscid unstable modes with n = 0 for 
A1 = 0.15, which as seen in figure 14(a) do not exist even for d = have very 
small growth rates. Figure 10(b) shows that the growth rate for Al = 0.15 becomes 
positive for A below lop5, so that axisymmetric instabilities for Al  = 0.15 show 
up at Reynolds numbers larger than those represented in figure 14. In any case, 
axisymmetric instabilities appear only for Type I1 vortices (Al < 0.2, approximately). 
The comparison of figures 12(a) and 13(a) with figures 7(a)  and 7(b)  shows that 
these unstable inviscid modes with very small growth rates also appear for non- 
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axisymmetric disturbances in Type I1 vortices for relatively large values of a (i.e. 
small-wavelength disturbances). 

Two important features are observed in figure 12 for n = -1 disturbances as d 
increases above (Re decreases below 100). First, there is a shift of the peak 
growth rates of the inviscid unstable modes to smaller axial wavenumbers, so that 
viscosity stabilizes faster shorter-wavelength disturbances. This viscosity damping of 
the inviscid modes is also faster for Type I than for Type I1 vortices. Secondly, 
viscous unstable modes appear, with peak growth rates significantly larger than the 
inviscid ones, for Type I1 vortices (in particular they are concentrated for Al < -0.5, 
approximately, increasing the peak growth rate very fast as A1 + -1/$) and a 
of order unity. In this region of the (A1,a)-plane the inviscid unstable modes have 
practically vanished for A = lo-'. 

For n = 1 disturbances (figure 13), no viscous unstable modes in exactly the above 
sense appear. But in a small region of the (Al,a)-plane, which practically coincides 
with that where the viscous unstable modes for n = -1 disturbances appear, there 
is no appreciable viscous stabilization of the inviscid unstable modes, the growth 
rate for A = lo-' being almost the same as for d = 0. Viscous damping of the 
inviscid unstable modes is thus much faster for Type I vortices and for large a, 
being practically null in the small region of the parametric plane just mentioned. 
A similar situation occurs for axisymmetric disturbances (figure 14). The difference 
is that the viscous stabilization occurs at much higher Reynolds numbers and it 
affects unstable modes with much smaller growth rates. In addition, when y1 = 0 
purely viscous unstable modes appear with rather small axial wavenumbers (large 
wavelengths). However, these last unstable modes with a 4 1 should be cautiously 
considered because of the local character of the non-parallel analysis performed here 
(see $3). 

As mentioned above, non-parallel effects in the stability of Long's vortex have also 
been considered by Foster & Jacqmin (1992) in the limit of large M for Type I1 
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FIGURE 12. Contours of constant growth rate of the most unstable modes in the (cr,A~)-plane for 
rn = 1, n = -1, and three increasing values of A :  0.001 (a), 0.01 (b) ,  and 0.1 (c). 

vortices (A1 -+ -1/$). These authors thus extended the asymptotic results by Foster 
& Smith (1989) to account for effects of finite Reynolds number. They showed that in 
this large-M limit non-parallel effects are even more important than the viscous terms 
in determining the finite-Re behaviour. One of the main results found by Foster & 
Jacqmin is that viscosity tends to stabilize the II > 1 modes more effectively than the 
n < -1 ones. This is in agreement with the results shown in figure 10(a), according 
to which this result can also be extended to n = 1 and II = -1. 

5 .  Results for rn > 1 
An exhaustive search for inviscid and viscous instabilities, similar to that reported 

above for m = 1, has been carried out for m = 1.1 and m = 1.2. These two values 
of m (particularly m = 1.1) are of interest because it was shown in FFB that many 
real vortex cores may be approximately described by the present self-similar solutions 
with m slightly larger than unity. Except for the important difference that now these 
stability results are governed by a swirl parameter (L) ,  rather than by a flow force 
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FIGURE 13. Contours of constant growth rate of the most unstable modes in the (a,A1)-plane for 
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( M ) ,  as is the case in real vortex cores, the results are, in terms of Al, very similar 
to those for m = 1 described above. Therefore, only the main, but relatively minor, 
distinctive features are reported here. 

The differences are more significant for the inviscid unstable modes than for the 
viscous ones, and for n < 0 than for n > 0. As shown in figure 15, the map of the 
inviscid instabilities in the (a,Al)-plane for n = 1 disturbances are, for m = 1.1 and 
m = 1.2, almost identical with the corresponding one for m = 1 (figure 7a). For 
n = -1 (figure 16), the region of instabilities decreases as m increases. The peak 
growth rate for Type I1 solutions (especially for A1 < -0.4, approximately) increases 
and shifts to larger values of a, while for Type I solutions it decreases and shifts to 
smaller values of M (larger wavelengths). The effect of increasing m is thus somewhat 
analogous to the effect of viscosity when n = -1 (compare with figure 12). The 
most significant differences appear, however, for axisymmetric (n = 0) disturbances 
(figure 17). As m increases, the peak growth rates for A1 < -0.4 (approximately) 
increase, but the unstable region shrinks to smaller values of Al .  In particular, as a 
difference with m = 1, no unstable axisymmetric modes are found for the folding value 
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A1 2: 0.15 when m = 1.1 (and, of course, when m = 1.2). Thus, the main distinction 
found between Type I and Type I1 solutions, the stability of Type I solutions under 
axisymmetric disturbances, is even sharper for m > 1 than for Long’s vortex. 

Regarding the viscous instabilities, the differences between Long’s vortex and 
vortices with m slightly larger than unity are even less important. Two distinctive 
features may be commented on. First, when n < 0, viscosity is more effective 
stabilizing inviscid modes for m > 1 than for m = 1 (see figure 18 for m = 1.1 and 
n = -l), except for purely viscous modes. Moreover, these last modes for n = -1 
appear for smaller values of A1 when m > 1. In particular, no unstable viscous mode 
appears for the folding value when m > 1. Thus, the other important distinction 
between Type I and Type I1 solutions, the presence of purely viscous unstable modes 
for Type I1 solutions, is again sharper for m > 1 than for m = 1. 
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FIGURE 15. Contours of constant growth rate of the most unstable inviscid modes ( A  = 0) in the 
(a,AI)-plane for n = 1, and for m = 1.1 (a) and m = 1.2 (b). 
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FIGURE 16. Contours of constant growth rate of the most unstable inviscid modes ( A  = 0) in the 
(a,Al)-plane for n = -1, and for m = 1.1 (a) and m = 1.2 (b). 

6. Summary and discussion 
This paper has analysed the inviscid and viscous stability of a family of self-similar 

vortex cores. These flows correspond to exact solutions to the near-axis axisymmetric 
boundary layer equations matching external inviscid vortices with azimuthal velocity 
I/ proportional to a negative power of the distance to the axis, I/ - rrnp2, with 
0 < m < 2. For m = 1 one has the well-known Long’s vortex. However, experimental 
data show that the external inviscid azimuthal velocity surrounding many real vortex 
cores decreases with a power of r corresponding to values of m a little larger than 
unity (see e.g. Ogawa 1993). Particularly, the value m 21 1.1 is shown in FFB to best 
agree with experimental and numerical data for several confined and free vortex cores. 
The stability analysis has been performed for m = 1, m = 1.1 and m = 1.2. The results 
for the case m = 1 have been compared with previous ones on the stability of Long’s 
vortex, especially with the recent work by KT, which extends and corrects previous 
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FIGURE 17. Contours of constant growth rate of the most unstable inviscid modes ( A  = 0) in the 
(cc,Al)-plane for n = 0, and for m = 1.1 (a)  and m = 1.2 (b). 

ones. As an important difference with most of these earlier works, non-parallel effects 
of the base flow have been retained in the linear equations for the perturbations. It 
is shown that these non-parallel effects enter these equations at the same level as 
the viscous terms, i.e. proportional to the inverse of the Reynolds number, which is 
assumed large (non-parallel effects were also considered in the instability of Long’s 
vortex by Foster & Jacqmin 1992 in their asymptotic analysis for large values of M ) .  
Global pictures of the instabilities of Long’s vortex are given here for the first time. 

Although the results for rn = 1 agree mostly with those given by KT on the stability 
of Long’s vortex, new important unstable modes are found in this work which were 
not uncovered by KT. Of them, the most relevant are perhaps the inviscid unstable 
modes for axisymmetric disturbances ( n  = O), found only for Type I1 solutions. This 
discrepancy in the results is not due to the non-parallel effwts of the steady vortex 
because they do not affect to the inviscid modes. It is due, simply, to the fact 
that these authors did not analyse all the Long’s solutions, but only four particular 
cases. Though two of them, Long-I1 and Long-IV, corresponding to A1 = -0.15 and 
Al  = -0.4, respectively, are found here to be unstable under inviscid axisymmetric 
perturbations, their corresponding growth rates are very small. Indeed, it is observed 
in figures 7(c)  and 8 that, in spite of the fact that these axisymmetric disturbances 
become unstable for values of Al smaller than the critical or folding value (A;  N 0.15), 
i.e. for Type I1 solutions, their growth rate becomes of the same order as the growth 
rate of the non-axisymmetric perturbations only for A1 < -0.6, approximately. In 
addition, as observed in figure 14, for A1 > -0.4, approximately, the inviscid unstable 
modes are stabilized by viscosity at relatively high Reynolds numbers (much higher 
than for non-axisymmetric disturbances), and all the results given by KT are for large 
but finite Reynolds numbers. 

Purely viscous unstable modes for Long’s vortex are also found in this work for the 
first time. That viscosity, in addition to its stabilizing effect on the inviscid unstable 
modes, may also have a destabilizing effect in swirling flows was first shown by 
Khorrami 1991a for the Batchelor’s model of a trailing vortex. However the search 
by KT for these viscous unstable modes of Long’s vortex was not successful. It 
seems therefore plausible that these viscous instabilities are due to the non-parallel 
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effects. However, it is found here that viscous unstable modes appear only for Type I1 
solutions, mainly for A1 < -0.4, approximately, and values of a between 0.2 and 1.2 
(see figures 16-18), so that the discrepancies may be due to the same reasons given 
above for the inviscid axisymmetric disturbances. Properly speaking, these viscous 
unstable modes appear only for disturbances with y1 = -1. For n 2 0 viscosity does 
not have a significant damping effect on the inviscid instabilities with parameters in 
the range of the (a, Al)-plane just mentioned. 

The’map of instabilities, both inviscid and viscous, found for the cases m = 1.2 
and m = 1.1 are very similar to that for m = 1 in terms of A1 (the axial velocity 
at the axis). However, there exists an important difference in the physical parameter 
characterizing the different solutions and, therefore, their stability, which for m # 1 is 
a swirl parameter (L) ,  precisely the one known to govern the real problem, while this 
is not the case in the highly degenerate case m = 1 (see FFB). The minor differences 
between m = 1 and m slightly larger than unity occur mainly in the newly found 
inviscid unstable modes for axisymmetric disturbances and viscous unstable modes, 
both affecting only Type I1 solutions. It is found that for m = 1.1 and m = 1.2 these 
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instabilities make a sharper distinction between Type I and Type I1 solutions than 
for Long's vortex. 

One of the original objectives of this work was to find if a relation exists between 
the solution breakdown of the model flow and its stability. That is, given the fact 
that vortex core solutions do not exist above a critical or folding value of the swirl 
parameter L*(m) (for 1 < m < 2, which are the most relevant cases), one questions the 
stability of the vortices as L approaches its critical value. This question is of interest 
in relation to the vortex breakdown phenomenon because the loss of a solution to 
the near-axis boundary layer equations is one of the theories proposed to explain the 
phenomenon (e.g. Hall 1972). In addition, it is shown elsewhere (Fernandez Feria, 
Fernandez de la Mora & Barrero 1996, and Perez-Saborid et al. 1996) that the present 
viscous vortex cores constitute the near-axis flow of a family of nearly inviscid conical 
vortices, whose structure changes abruptly to a two-cell configuration, resembling 
the bubble structure found in vortex breakdown, when solution breakdown of the 
near-axis flow occurs (see also Shtern & Hussain 1993 for the case m = 1). Therefore, 
any relation between solution breakdown of the present family of self-similar vortex 
cores and their stability would support another proposed explanation of the vortex 
breakdown phenomenon which links it to hydrodynamic instabilities (e.g. Lessen et 
al. 1974). A recent attempt in this direction was made by Gelfgat et al. (1996), who 
considered the stability of a confined swirling flow in a cylinder produced by the 
rotation of its base. Numerically it is found that a bubble form of vortex breakdown 
is reached above a critical Reynolds number (Lopez 1990). Gelfgat et al. found 
that this critical Reynolds number for vortex breakdown is smaller than the critical 
Reynolds number they computed for instability, concluding that vortex breakdown is 
not an effect of linear instability. A different conclusion was however drawn recently 
by Rusak & Wang (1995) in relation to the inviscid rotating flow in a pipe. 

In the problem considered here it is found that all solutions, for any value of Al,  are 
unstable, at least for non-axisymmetric disturbances with n < 0 (this has been known 
for Long's vortex since the work by Foster & Duck 1982). Whence, the question 
is whether the growth rate of at least one type of perturbation reaches a maximum 
as L -+ L' (Al + A;,  either for Type I or for Type I1 solutions). In view of the 
present results the answer to this question is negative. Nothing particular happens 
to the linear stability of the present model vortex cores as the swirl parameter 
corresponding to the folding of Type I and Type I1 solutions is reached (or the 
folding axial flow force in the case m = 1). Therefore, solution breakdown (vortex 
breakdown) of the present vortex cores is not a consequence of linear instability. 
However, a significant new result is given here in relation to previous works on the 
stability of Long's vortex, which extends also to m > 1. Some new instabilities are 
found which affect only Type I1 solutions : inviscid axisymmetric instabilities, and 
viscous instabilities, both axisymmetric and non-axisymmetric. Of special interest 
are the axisymmetric modes because in most cases vortex breakdown produces an 
axisymmetric recirculation bubble (at least initially). In any case, it is found here 
that there exist instabilities which differentiate Type I and Type I1 solutions. Thus, 
one may postulate that, for the most interesting case of m larger than unity, if L is 
smaller than the folding value L*(m), the flow adopts a form corresponding to a Type 
I solution because Type I1 solutions are unstable under axisymmetric disturbances. 
(For non-axisymmetric disturbances both types of solutions are unstable, but one 
may conjecture that these instabilities saturate at small amplitude in order to preserve 
the generally axisymmetric character of the flow.) For increasing swirl intensity, 
when L becomes larger than L', vortex breakdown occurs, a phenomenon which is 
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not related to linear instabilities. The structure of the flow then jumps to another 
configuration, Type I11 solution, which cannot be described by the near-axis boundary 
layer approximation used to describe the vortex cores analysed here (e.g. Beran & 
Culik 1992). For high-Reynolds-number flows with conical symmetry, the structure of 
this Type I11 flow is described by a two-cell conical solution (see Perez-Saborid et al. 
1995; and Shtern & Hussain 1993 for the particular case m = 1). As a final comment, 
it seems clear from this work that to gain further insight into the phenomenon one 
has to consider the nonlinear (non-parallel) stability problem. 

This work has been supported by the Direccibn General de Investigacibn Cientifica 
y Tkcnica of Spain, Grant PB93-0974, and by a NATO Collaborative Research Grant, 
CRG 950368. Constant discussions with Professors J. Fernandez de la Mora and A. 
Barrero have been most stimulating. I am greatly indebted to both of them. I 
also gratefully acknowledge several comments by Profesors A. Castellanos and I. G. 
Loscertales. 

REFERENCES 

ARDALAN, K., DRAPER, K. & FOSTER, M. R. 1995 Instabilities of the Type I Long’s vortex at large 

BATCHELQR, G. K. 1964 Axial flow in trailing line vortices. J.  Fluid Mech. 20, 645-658. 
BATCHELOR, G. K. & GILL, A. E. 1962 Analysis of the stability of axisymmetric jets. J .  Fluid Mech. 

BERAN, P. S. & CULIK, F. E. C. 1992 The role of non-uniqueness in the development of vortex 

BURGGRAF, 0. R. & FOSTER, M. R. 1977 Continuation and breakdown in tornado-like vortices. J.  

COTTON, F. W. & SALWEN, H. 1981 Linear stability of rotating Hagen-Poseuille flow. J. Fluid Mech. 

DUZIN, P. G., BANKS, W. H. H. & ZATURSKA, M. B. 1995 The development of Long’s vortex. J.  

DUCK, P. W. 1986 The inviscid instability of swirling flows: large wave number disturbances. Z .  

DUCK, P. W. & FOSTER, M. R. 1980 The inviscid stability of a trailing line vortex. 2. Angew. Math. 

DUCK, P. W. & KHORRAMI, M. R. 1992 A note on the effects of viscosity on the stability of a 

ESCUDIER, M. P. 1988 Vortex breakdown: observations and explanations. In Prog. Aero. Sci. 25, 

FERNANDEZ-FERIA, R., FERNANDEZ DE LA MORA, J. & BARRERO, A. 1995 Solution breakdown in a 
family of self-similar nearly-inviscid axisymmetric vortices. J .  Fluid Mech. 305, 77-9 1. (referred 
herein as FFB). 

FERNANDEZ-FERIA, R., FERNANDEZ DE LA MORA, J. & BARRERO, A. 1996 Conically similar swirling 
flows at high Reynolds numbers. Part 1. One-cell solutions. J .  Fluid Mech. (submitted). 

FOSTER, M. R. 1993 Nonaxisymmetric instability in slowly swirling jet flows. Phys. Fluids 5, 3122- 
3135. 

FOSTER, M. R. & DUCK, P. W. 1982 The inviscid stability of Long’s vortex. Phys. Fluids 25, 
171 5-1 71 8. 

FOSTER, M. R. & JACQMIN, D. 1992 Non-parallel effects in the stability of Long’s vortex. J. Fluid 
Mech. 244, 289-306. 

FOSTER, M. R. & SMITH, F. T. 1989 Stability of Long’s vortex at large flow force. J. Fluid Mech. 206, 

GELFGAT, A,, BAR-YOSEPH, P. & SOLAN, A. 1996 Stability of confined swirling flow with and without 

HALL, M. G. 1972 Vortex breakdown. Ann. Reu. Fluid Mech. 4, 195-218. 

flow force. Phys. Fluids 7, 365-373. 

14, 529-551. 

breakdown in tubes. J .  Fluid Mech. 242, 491-527. 

Fluid Mech. 80, 685-703. 

108, 101-125. 

Fluid Mech. 286, 359-377. 

Angew. Math. Phys. 37, 34c360. 

Phys. 31, 524-532. 

trailing-line vortex. J .  Fluid. Mech. 245, 175-189. 

189-229. 

405-432. 

vortex breakdown. J .  Fluid Mech. 311, 1-36. 



Instabilities of axisymmetric vortex cores 365 

HOWARD, L. N. & GUPTA, A. S. 1962 On the hydrodynamic and hydromagnetic stability of swirling 

KHORRAMI, M. R. 1991a On the viscous modes of instability of a trailing line vortex. J .  Fluid Mech. 

KHORRAMI, M. R. 1991b A Chebyshev spectral collocation method using a staggered grid for the 

KHORRAMI, M. R. 1992 Behaviour of asymmetric unstable modes of trailing line vortex near the 

KHORRAMI, M. R. & TRIVEDI, P. 1994 The viscous stability analysis of Long’s vortex. Phys. Fluids 

LEIBOVICH, S.  1984 Vortex stability and breakdown: survey and extension. AIAA J .  22, 1192-1206. 
LEIBOVICH, S. & STEWARTSON, K. 1983 A sufficient condition for the instability of columnar vortices. 

LESSEN, M. & PAILLET, F. 1974 The stability of a trailing line vortex. Part 2. Viscous theory. J. Fluid 

LESSEN, M., SINGH, P. J. & PAILLET, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid 

LONG, R. L. 1958 Vortex motion in a viscous fluid. J .  Met. 15, 108-112. 
LONG, R. L. 1961 A vortex in an infinite fluid. J. Fluid Mech. 11, 611-625. 
LOPEZ, J. M. 1990 Axisymmetrical vortex breakdown. Part 1. Confined swirling flow. J. Fluid Mech. 

MAYER, E. W. & POWELL, K. G. 1992 Viscous and inviscid instabilities of a trailing vortex. J.  Fluid 

OGAWA, A. 1993 Vortex Flows. CRC Press. 
PEREZ-SABORID, M., BARRERO, A., FERNANDEZ-FERIA, R. & FERNANDEZ DE LA MOM, J. 1996 

Conically similar swirling flows at high Reynolds numbers. Part 2. Two-cell solutions. J .  Fluid 
Mech. (submitted). 

RUSAK, Z. & WANG, S. 1995 A theory of the axisymmetric vortex breakdown. Bull. Am. Phys. SOC. 
40, 2044. 

SHTERN, V. N. & HUSSAIN, F. 1993 Hysteresys in a swirling jet as a model tornado. Phys. Fluids A 

SPALL, R. E., GATSKI, T. B. & GROSCH, C. E. 1987 A criterion for vortex breakdown. Phys. Fluids 

STEWARTSON, K. 1982 The stability of swirling flows at large Reynolds number when subjected to 

UBEROI, M. S., CHOW, C. Y. & NARAIN, J. P. 1972 Stability of coaxial rotating jet and vortex of 

flows. J. Fluid Mech. 14, 463-476. 

225, 197-212. 

stability of cylindrical flows. Intl J.  Num. Methods Fluids 12, 825-833. 

upper neutral curve. Phys. Fluids A 4, 1310-1313. 

6, 2623-2630 (referred herein as KT). 

J .  Fluid Mech. 126, 335-356. 

Mech. 65, 769-779. 

theory. J .  Fluid Mech. 63, 753-763. 

221, 533-552. 

Mech. 245, 91-114. 

5, 2183-2195. 

30, 3434-3440. 

disturbances with large azimuthal wave number. Phys. Fluids 25, 1953-1957. 

different densities. Phys. Fluids 15, 1718-1727. 


